Universal Extensions
نویسنده
چکیده
In the category of left modules over a unital ring we show that a left exact reflector determines, for each n ≥ 1, a torsion theoretic setting in which universal extensions of length n exist. Combined with recent work of Rodelo-Van der Linden [9] this establishes the existence of universal central extensions of groups and Lie algebras. Interpreted in the homotopy category of topological spaces, it provides a new perspective on existing results about Quillen’s plus construction and its effect on homotopy groups. Résumé Dans la catégorie des modules à gauche sur un anneau unitaire, nous démontrons qu’un réflecteur exact à gauche détermine pour chaque n ≥ 1, un cadre conforme à la théorie de la torsion dans lequel existent des extensions universelles de longueur n. Combiné avec les travaux récents de Rodelo Van der Linden [9], ce résultat établit l’existence d’extensions centrales universelles de groupes et d’algèbres de Lie. Interprété dans la catégorie d’homotopie des espaces topologiques, elle offre une nouvelle perspective sur les résultats existants sur la construction plus de Quillen et ses effets sur les groupes d’homotopie.
منابع مشابه
Universal Central Extension of Current Superalgebras
Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras are very impo...
متن کاملQuantifier Extensions of Multidimensional Sofic Shifts
We define a pair of simple combinatorial operations on subshifts, called existential and universal extensions, and study their basic properties. We prove that the existential extension of a sofic shift by another sofic shift is always sofic, and the same holds for the universal extension in one dimension. However, we also show by a construction that universal extensions of twodimensional sofic ...
متن کاملOn universal central extensions of Hom-Leibniz algebras
In the category of Hom-Leibniz algebras we introduce the notion of Hom-corepresentation as adequate coefficients to construct the chain complex from which we compute the Leibniz homology of Hom-Leibniz algebras. We study universal central extensions of Hom-Leibniz algebras and generalize some classical results, nevertheless it is necessary to introduce new notions of α-central extension, univer...
متن کاملThe plus construction, Postnikov towers and universal central module extensions
Given a connected space X, we consider the effect of Quillen’s plus construction on the homotopy groups of X in terms of its Postnikov decomposition. Specifically, using universal properties of the fibration sequence AX → X → X+, we explain the contribution of πnX to πnX +, πn+1X + and πnAX, πn+1AX explicitly in terms of the low dimensional homology of πnX regarded as a module over π1X. Key ing...
متن کاملA Relationship between Hnn Extensions and Amalgamated Free Products in Operator Algebras
By improving the previous construction in [18] we observe that any reduced HNN extension is a corner of a certain reduced amalgamated free product in both the von Neumann algebra and the C∗-algebra settings. Then, the same fact is shown for universal HNN extensions of C∗-algebras. We apply the observation to the questions of factoriality and type classification of HNN extensions of von Neumann ...
متن کاملCentral extensions of rank 2 groups and applications
We show that the universal central extensions of the little projective group of any Moufang polygon is precisely the Steinberg group obtained from its defining commutator relations, provided the defining structure is not too small. As an application, we get that also the universal central extensions of the little projective group of any 2-spherical Moufang twin building is precisely the Steinbe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011